
Gastner

NOs- 175 0 ,.

Towards Automation of User Interface Design

Rainer Gastner Gerhard K. Kraetzschmar Ernst Lutz

Research Group Knowledge Acquisition

Bavarian Research Center for Knowledge Based Systems (FORWISS)

Am Weichselgarten 7, 8500 Erlangen, Germany

e-mail: gastncr@forwiss.uni-erlangen.de

Abstract

This paper suggests an approach to automatic soft-

ware design in the domain of graphical user interfaces.
There are still some drawbacks in existing UIMSs

which basicly offer only quantitative layout specifica-

tions via direct manipulation. Our approach suggests

-a convenient way to get a default graphical user inter-
_face which may be customized and redesigned easily

: in further prototyping cycles. -
.... U.

1 Introduction

The automation of software design becomes more

powerful ifthe targetsystems generated are limited

to a certaindomain. The domain addressed in this

paper is the class of graphical, highly interactive sys-

tems for accessing data of specifieddata structures

by end users. The focus of thispaper isfurtherre-
stricted. It concentrateson the automation of the

design of a graphical user interface(GUI) for these

systems.

Building GUIs with GUI toolkitsor user interface

management systems (UIMSs) is stilla laborious,

time-consuming task even ifitissupported by di-

rect manipulation facilities[6].The basic problems

we identifiedare the following:

• The GUI designer has to decide which graphi-

cal dement isappropriatefor a desiredinterac-

t,ion, i.e.given a data structureand data type

descriptionsof the dements to be accessed and

a set of GUI dements the designer has to per-

form a mapping between the data structureand

the GUI dements.

• With directmanipulation an initialGUI may be

builtbut ifthe data structureor the data types

are changed the manual adaption of the GUI is

arduous. According to the changes cf a data
structure the extent of the redesign task may

cause pretty rmch effort.

• Due to the lack of adopted GUI design guide-

lines,for similardata structuresin differentap-

plicationsa differentGUI may existwhich iscon-

tradictiousto user interfaceconsistency[10].

The approach introduced in this paper to address

these problems isthe automatic generationof GUIs

from a high levelspecification.This generation is

performed by a knowledge-based meta-tool which is

used by a GUI designer.Questions which have to be

tackledincludethe following:(1)To what extent can

the designerbe supported in the specificationtask?

(2) What kind ofuserinterfaceshould the recta-tool

have. (3) Which kind ofknowledge isdomain invari-

ant and which isapplicationspecific(and therefore

needs to be entered by the designer)? (4) Which set

ofdefaultdesign decisionsare adequate?

Our approach to answer these questions is based

on the following idea: The designer specifies data

structures, data types and operations which the user

of the target system has to perform with an user-

friendly GUI. Corresponding GUI dements realizing
these operations are associated automatically and the

GUI is generated. The designer in turn refines the
GUI by interactivly customizing the msta-tools asso-

ciation and specifying quali_ali_elayout constraints.

This approach facilitatesusers who have no knowl-

edge about interfaceprogramming toconstructa GUI

easily.Since the GUI of a meta-tool itselfisin the

domain our approch isapplicablefor the design of

meta-tool'sGUI as well.

In section2 the addressed domain isintroduced

in more detail.Section 3 discussesthe problems of

configurationand generation of the target systems.

In section4 our approach isdescribed to solvethese

problems. Section 5 compares our approach to re-

lated work and section6 givessome concluding re-

50

Gastner

marks and perspectives on future work.

2 Domain

The domain our meta-tool addresses is the dass of

GUIs that allow the access of specified data struc-

tures whose dements are characterized be specific

data types. The access comprises additon, deletion,

modification, selection and browsing of data struc-
tures and instances.

There exist rather different interpretations of what

the notion GUI should mean [6]. In our recta-tool the
GUI is built with a set of objects which have a de-

scription of a graphical presentation and methods to

handle the display presentation and the communica-
tion with the underlying window system. Examples

are buttons, settings or text fields. No other func-

tionality is added to the GUI. The GUI objects are
described within an object--oriented class hierarchy

adopting inheritance. This is the common approach
how state--of-the-art GUI toolkits and UIMSs are re-

alized [6].

Our meta-tool produces specializations of classes

in a class hierarchy provided by the GUI toolkit

I,ispView [1] and instantiation methods. LispView
provides an interfaces between Sun CommonLisp and

OpenWindows. The same structure is generated by

the GUI devolopment system Open Wiudows Devel-

oper's Guide [3].

3 Problem Description

The design of a meta-tool for automating the design

of GUIs fi'om specifications of data structures, data
types and operations raises some questions which

mainly influence the raeta-tool design decisions:

Which kind of knowledge has to be represented

to support the generation and which kind of

knowledge representation should be used?

• Since an initially generated GUI in most cases
does not meet the end user's whishes rapid proto-

typing facilities for iterative refinement and cus-
tomization is needed.

• The specification facility must allow only con-

sistent specifications, i.e. the designer's specifi-
cation has to be syntactically and semantically

correct and the generator will produce a GUI
inside the domain. How can we support specifi-

cation consistency?

The following section discusses our approach to-

wards an automation of the GUI design addressing

the questions given above.

4 Approach

State--of-the-art UIMSs mainly deal with a user-

i_iendly composition of the GUI. From this point of

view only the syntactical aspects in building GUIs

are addressed. But naturally GUIs are built for user
interactions which have certain semantics. For in-

stance, when the GUI designer using a direct rn_

nipulation LrIMS selects a button and arranges it

in the target interface via mouse dragging he knows
the reason why he selects a button and which opera-

tion should be performed by clicking on the button.
The GUI components are nothing else than graphi-

cal presentations of abstract interactions. The map-

ping from the semantics of these interactions to cor-
responding GUI dements is the main task of an GUI

designer.
Our approach for specifying GUIs starts from a se-

mantic point of view and focuses on this mapping.
The GUI designer does not specify a composition of

the GUI components itself rather than the interac-
tions the GUI components shall be used for. That

means the focus of the specification is not how to

present interactions on the screen but what kind of
interactions shall be established. The interactions we

consider are the access operations specified in section

2. The mapping from the interaction specification

s Which part of the knowledge is domain specific to the GUI components is done by the rneta-tool

but application invariant and which part is ap- automatically. In a further step the designer may

plication specific? cust0mize the generated GUi either by changing the
mapping or specifying additional qualitative layout

• What kind of default configuration decisions constraints.
makes sense? Can specific subdomains be identi-

fied for which specific configuration macros may 4.1 Configuration Process
be used?

In this section the configuration process is discussed.

• What is the most efficient way to enter geometric Figure 1 provides an overview of the configuration

layout specifications? steps. The actions the designer has to perform are

51

Gastner

eva1!ation

o.k

Figurel: iterativeGUI configurationprocess

specificationand evaluation represented as round-

cornered boxes. The recta-toolactivity(the genera-

tion of the GUI) isrepresentedas a rectangularbox.

The designer startswith the specificationof the
desiredinteractionson data structures.Then an ini-

tialGUI isgenerated by the recta-toolusing default

mapping and layoutconfigurationsstoredina knowl-

edge base (seesection4.2).The initialgenerationhas

to be evaluated by the designer.Then one ofthe fol-

lowing four choicesrtmy be made:

I. The designeragreeswith the generated GUI and

the configurationprocess isfinished.

2. The designer specifiesqualitativegeometric lay.

out constraintsto rearrange the GUI compo-

nents on the screen.

3. The designer altersthe mapping between the

specifiedinteractionsand thecorresponding GUI

component.

4. The designer manipulates the interactionspeci-

fication,e.g.a new dement isadded to a data

structure.

In case ofa new or re-specificationa new genera-

tion cyclestarts.The order given above impliesthe

extent of the GUI redesign in a cycle afterevalua-

tion. Choice 2 affectsonly the geometric positionof

GUI dements, choice 3 affectsthe presentationofan

interaction,and choice 4 affectsthe interactionit-

self.Explorative rapid prototyping by iteratingthe

configurationcyclesissupported conveniently,since

the designerstartswith a specificationofabstractin-

teractionsomitting GUI aspectsin the initialphase.

In followingcycleshe can customize presentationas-

pects very quicklyor redesign the interactions.

Since end usersare supposed to design the GUIs

the recta-toolmast provide user-friendlygraphical

interfacesitself.To support specificationconsistency,

the specificationismenu--driven as far as possible.

Menus with appropriate selectionsmay be _ered

which isfurtherdiscussedinsection4.2.An interest-

ing issueisthatthe GUI ofthe recta-toolto enterthe

specificationisitselfinthe domain ofthe recta-tool.
Since the recta-toolallows to use the specification

languages directlywithout the corresponding GUI I,

the GUI for the recta-toolcan be generated by the

hints-toolitself.

4.2 Configuration Knowledge and

Representation

This sectiondealswith the knowledge needed to an-

tomate the GUI configuration.We distinguishtwo

classesofknowledge. Knowledge isneeded tosupport

an dlicientuser-friendlyspecificationand to gener-

ate a GUI with an minimal specification.This kind

of knowledge isapplication-invariantand referedas

domain-specific (in the GUI domain). On the other

hand applica_ion-speci]ic knowledge must be enterd

by the designer to build an GUI for a set of certain

interactions. The following two subsection discuss

these two knowledge classes.

4.2.1 Domain-speclfic knowledge

The following listed knowledge categories are stored

in the recta-tool's knowledge base in order to sup-

port specification and generation. Note that this
is mainly knowledge about the possible application-

specific knowledge (e.g. possiple types of layout con-

straints) and therefore recta-knowledge.

• model of target architecture; the structure

of the code generated by our recta-tool is given
by the code structure the Developer's Guide for

LispView interfaces [3] generates.

• a library of interaction types and data

types; interactiontypes include read and write
access to data and selectionof data. Cur-

rently the libraryof data types includes enu-

meration, character,real,integer,string,sym-

bol,and object-class.

I Otherwise there _uld be recta-tool tower never ending.

52

Gastner

a library of GUI dements; this library is

given by the used GUI toolkit LispView [1].

mapping of interaction specifications to

GUI dements; the mapping is gored as a ma-
trix in which for certain conditions made in a

data type specification a set of possible GUI

components is associated. The GUI component
selected by default is marked (see also section
4.4. •

library of layout constraints; currently

we have realized 36 layout constraint types

which are hierarchicallyorganizedand offeredin

menus. Furthermore, there exitsa layout con-

• standard configurations; see section 4.4.

The domain-specific knowledge is stored in ASCII-

filesin specialrepresentationlanguages. The files

may eitherbe editeddirectlyby a text editoror be

generated from graphical specifications.An inter-

The declarativespecificationlanguages may also

be used directlyby the designer. Both inter-

actionsand data types are offeredin menus to

the designer. The menus are configured dy-

namically according to certainspecificationcon-

straints;e.g.the followingconstraintmay not be

violated in the example above: (lessorequa].

mincard maxcaxd).

association of interactions and GUI com-

ponents; if the designer does not agree with the
recta-tool's association he may select another

association or more than one associations for a

given interaction l_om a menu. The menu items
consist of all GUI components which are accept-

straint construction facility for the meta-tool de: able presentations for the interaction asserting

mgner to implement additional constraint types a consistent specification. If the designer asso-

based on a combination of types from a basic set. elates mere. than one GUI component to an in-

teraction, the interaction is presented in different

fashions in the GUI. For instance, the interac-

tion in the example above may be presented as
numeric field or a slider. The meta-tool would

select the numeric field by defa_It.

preter reads these filesand maps the external tel>- • layout constraints; the qualitativelayoutcon-

resentationto internalobjects, straintsmay be specifiedusing a declarative
: =: specificationlanguage or a GUI generating sen-

4.2.2 Application-specific knowledge

As shown in figure 1 there are three specification po6-

sibilities providing input for the generator.

interactions; the specification comprises the

type of operation and the data type to be ac-

cessed. The data type is specified separately.
Thus more than one interactionmay accessdata

of the same data type indifferentways. The ex-

ample below shows the declarativespecification

generated from the graphicalspecificationenvi-

ronment. A manipulation interactionisspecified

on data ofan integerslot.The valuerange isre-

gricted between 100 and 500, the slotissingle-

valued, and the value nmst be unique and en-

tered.

(def-int:erac¢ ion

:id 'sng:_s-number -mLnipultt £on

:operat'ion _taipult$ ion

:da$ a-¢ypo 'onglne-number -1:yps)

(dof-intsser

:£d *onK_s -nmnber-_ype

:oclualor_ea_er 100

• lessoroqusl $00

:m:Lnccrd I

m-','cLrd !

:unique T)

fences of thislanguage. The followingexample

demonstrates the power and user-friendlynessof

our layoutn_chanism:

Let BI,/_Bs beboxeswhichshallbe re'rangedas
follows:/_ and Bs shallbe atthebottom ,4"thelayout
frame; B1 shall be in the upper left corne_ ae the layout

frame; and B3 shall be ove_ D_ and _. This is expressed

as follows:
(bottom-margin B4 _)

(upped-left-corner Bl)

(over/_ (B2 B6))

Ent_ the l_mt layout cox_traint via the specification

GUI B4 and then B_ _uld by selected with the mouse on

the screen and then the _traint bot_m-margin _uld

be selected from the menu.

4.3 Layout computation

Each GUI dement has a rectangular bounding-box

which provides the size for the layout generator. The

36 layout constraints are one-dimensional geometric
relationships between these boxes. N-ary relation-

ships are resolved into binary ones which are con-
nected with a conjunction. The corners of the boxes

are represented by variables and the constraints are

always inequations of the following form:

o_ <z#-_ <_
These unequations can be solved using a longest-path

53

Gastner

algorithm suggested in [11]. If there are inconsisten-

des in the specified constraint set our algorithm re-
tracts contradictious constraints. The boxes are ar-

ranged fulfilling the specified constraints and are po-

sitioned in the upper left corner of the layout frame.

In a second cycle overlapping boxes (this may oc-

cur if the constraint set is not restrictive enough)

are solve by adding additional con_raints with dis-

junctions: A box B1 and a box B-z do not over-

lap if (beside B1B_) Y (beside B2B1) V (over
B1B2) V (over B_B1) holds. Since there may be

a huge number of layout configurations solving the
constraint set without overlapping the layout algo-

rithm gets a certain time for processing (e.g. three

seconds). The algorithm generates a set of solutions
and then selects the best solution when the time is

over. The selection criteria adopted currently is ei-

ther to minimize the area of the layout frame if the

size is not prespecified or to arrange the boxes with

equal distances between them in a fixed layout frame.

4.4 Standard Configurations

In order to give support in the specification of GUI

component associationsto interactionsand to select

defaultassociationswe (partly)representknowledge

found in the OPEN LOOK application style guide-

_nes [21. This know}edge is stored in a matrix in fl2is

way that for each GUI component it is marked under

which conditions i t is appropriate and if it should be
selected by default. Y_trthermore, OPEN LOOK pro-

vides a unique look-and-feel for all the target GUIs

and the GUI sepecification environment of our meta-
tool.

It ispossible to preconfigurespecialeditortypes

which include a number of fixed interactions.For

instance,a bgin editorconsistsalways of two inter-

actions,one forentering the user'sname and one for

entering the password. These two interactionsare

preconfigured as a symbol and stringmanipulation

interaction.Furthermore, a layoutframe with a fixed

size is configured, layout constraints are specified that

both GUI components (the meta-tool will associate

two text fields) should be centered and the text field
for the user's name should be located over the field

for the password entry. The configuration is stored

as subclass of a preconfigured editor class. Other

specialized editors may be partly preconfigured and

layouted like object editors or browsers. Preconfig-

ured GUI classes can be dynamically added by the

designer.

Adopting this configurartion library and the repre-

sented OPEN LOOK style guidelines we facilitate the

generation of GUIs which have a conmmn structure

and supports GUI consistency [10].

4.5 Implementation

Our meta-tool is implemented in Sun CommonLisp,
CLOS and LispView [1]. Object-oriented program-

ming is adopted basically. The target code is gener-

ated using templates which are expanded according

to the designer's specification or standard configura-

tions. By replacing the templates it is possible to

generate other GUI target code as well.

5 Related Work

In the last decade human-computer interaction and

the user interfaces have become an important re-

search field. UIMSs try to improve GUI development

and support mechanisms for GUI and dialogue spec-

ification, representation and management [6] [9]. In

[7] several generations of UIMSs are identified. It
is predicted that future UIMSs will be knowledge-

based and generate a user interface automatically us-

ing the specification of the underlying application.

Our approach is a step in this direction. Currently
the interactions have still to be coded by a GUI de-

signer, but there should be a way to generate the

interaction specification from application programs

automatically as well.

A number of development methodologies have been

suggested for user interfaces. Most of them daim

explorative prototyping as our approach (see figure

1), e.g. the star life cycle suggested in [7].

User interfaces may be specified language--based

with special user interface description languages,

graphical-based with direct manipulation facilities

with automatic generation from interaction descrip-

tions [9]. Since our meta-tool generates code which

can be manipulated by the Developer's Guide [3]
our approach combines these three possibilities which

nmy be alternatively used.

Similar approches for automatic generation of

GUIs are used in the GADGETS system [8] and

the PRED system [13], but they lack qualitative

layout specifications. Automatic presentation sys-

tems for information like SAGE [12] also use meta-

information to select an adequate presentation style.

A similar approach of default configurations of edi-

tors is applied in the msta-tool DOTS [4].

54

6 Concluding Remarks and

Future Work

We suggested an approach towards automation of

user interface design which starts from a semantic

point of view. The initial specification only deals
with what the GUI is to be built for and not how. Fur-

ther prototyping cycles allow to custonfize the ten-

anted GUI qualitatively. Since the generated GUI

code is interpretable by the direct manipulation tool

Developer's Guide [3], also quantitative layouting is

available and raay be adopted alternativly. Since the
meta-tool's GUI is in the recta-tool's domain itself a

reflexive application of the recta-tool is possible.

In the project KME (Knowledge Maintenance

Environment) 2 we designed a recta-tool called KME

workbench [5] for generating maintenance compo-

nents for knowledge bases of expert systems. A main-
tenance component for updating objects ff an object

oriented representation needs a GUI of the domain

described in this paper. Thus the GUI design recta-

tool is part of the KME workbench. We experienced

in this project that qualitative layout specifications

are very convenient and allow rapid explorative pro-

totyping. The GUI specification environment also al-

lows end users (e.g. knowledge engineers with ¢mly

few programming experience) to build adequate GUIs

essi]y.

We acquired GUI design knowledge from the
OPEN LOOK GUI application z_yle guidelines [2]

which is represented in a matrix representation and

allows the msta-tool to provide default configura-

tions. Furthermore, the explicit representation can

easily be changed and augmented.
Currently we work on the extension of default con-

figurations and GUI facilities. Special editor types

are identified in more specific application domains

and represented. We will evaluate how the GUI spec-

ification can be acquired automatically from the un-

derlying application. In the knowledge maintenance

context we will try to generated a default dialogue

control supported by a transaction management.

References

[1] IAsp V/ely Programming Manual. Sun Microsys-
terns, Inc., 1989.

[2] OPEN LOOK 'aphical Use, te ad AppZi-
ration _yle Guidelines. Sun Microsystems, Inc.,

Addison-Wesley, Reading, Massachusetts, 1990.

_KME _ itarted as joint project between FORWISS and
the company BMW, Munich.

[3]

[4]

Gasmer

OpenWindows Developer's Guide I.I, User's
Manual Sun Micrccystems, Inc., 1990.

tienrik Eriksson. Meta-Tool Support for Knotol-

edge Acquisition. PhD thesis, Linkoeping Uni-

versity, Sweden, 1991.

[5] Ruiner Gastner, Gerhard tC Kraetzschmar,
and Ernst Lutz. Kme--workbench: a meta-

tool for designing maintenance components for

knowledge based systems, paper submitted to

ECAI92, :January 1992.

[6] H. Rex Hartson and Deborah Hix. Human-

computer interface development: concepts and

systems for its management. ACM Computing

Surreys, 21(1):5-92, March 1989.

[7] H.R. Hartson and D.]Tax. Toward empirically
derived methodologies and tools for human-

computer interface development. /nf. Journal of

Man-Machine Studies, 31(4):477-494, October
1989.

[8] :Johannes L. Murals. The gadgets user interface

management system. _ructured Programming,

12(2):75-89, 1991.

[9] Brad A. Myers. User-interface--tools: introduc-

tion and survey. I_EE Software, 15-23, January
1989.

[10] :jakob Nielsen, editor. Coordinafin# User Inter.

faces far Consistency. Academic Press, London,
1989.

[11] Thomas Ottrnann and Peter Widmayer. A1-
gorilhmen und Datenstrukturen. BI v_rm-

senschaftsverlag, Mannheim, 1990.

[12] Steven F. Roth and Joe Mattis. Automat-
ing the presentation of information. In Sev-
enth 1F,EE Conference an Artificial Intelligence

Applications, pages 90-97, IEEE, IEEE Com-

puter Society Press, Washington, February, 24--
28 1991.

[13] S. Xie and P. H. Wmne. Kanait: a knowl-

edge acquisition and maintenance interface tool.
In M. H. Hamza, editor, //k-pert Systems The-

ory and Applications, pages 115-118, IASTED -

Acta Press,Anaheim, 1988.

55

